

SMA Snap-on jack (female) / SMA jack (female) Straight Adaptor DC-18 GHz, VSWR \leq 1.15

AD-AQ2A25A / 9X-9X

All dimensions are in mm [inch]

Tolerances according to DIN ISO 2768-mH

Interface

according to

IEC 60169-15; MIL-STD-348B/310

Electrical Data

Impedance

50 Ω

Frequency

DC to 18 GHz

VSWR (Return Loss)

\leq 1.15 (\geq 23 dB)

Insertion Loss

$\leq 0.05 \times \sqrt{f}$ (GHz) dB

Insulation resistance

$\geq 5 \text{ G}\Omega$

Center contact resistance

$\leq 3 \text{ m}\Omega$

Outer contact resistance

$\leq 3 \text{ m}\Omega$

Test voltage

1000 V rms

Working voltage

350 V rms

RF-leakage

$\geq 100 \text{ dB}$ up to 1 GHz

Material And Plating

Piece Parts (SMA)

Material

Plating

Centre contact

Beryllium Copper

Gold plating, 3 μ inch

(Non-magnetic nickel-phosphorus underplating, 80 μ inch)

Body

Stainless Steel

Passivated

Insulator

PTFE

Piece Parts (SMA)

Material

Plating

Centre contact

Beryllium Copper

Gold plating, 3 μ inch

(Non-magnetic nickel-phosphorus underplating, 80 μ inch)

Body

Stainless Steel

Passivated

Insulator

PTFE

SMA Snap-on jack (female) / SMA jack (female) Straight Adaptor
DC-18 GHz, VSWR ≤ 1.15

AD-AQ2A25A / 9X-9X

Mechanical Data

Coupling mechanisms
Mating cycles
Center contact captivation

SMA Snap-On male
Snap-lock
≥ 500
≥ 27 N

SMA female
Screw-lock
≥ 500
≥ 27 N

Environmental Data

Temperature Range
Thermal shock
Corrosion
Vibration
Shock
Moisture resistance
RoHS

-65°C to +155°C
MIL-STD-202, Method 107, Condition B
MIL-STD-202, Method 101, Condition B
MIL-STD-202, Method 204, Condition D
MIL-STD-202, Method 213, Condition I
MIL-STD-202, Method 106
compliant

Packing

Single or 100